A DRIVING OPERATIONAL BEHAVIOR ANALYSIS BASED ON THE STATE TRANSITION MODEL FOR AUTONOMOUS VEHICLES

Yasuhiro, Akagi*, Pongsathorn Raksincharoensak*
* Tokyo University of Agriculture and Technology
akagi-y@cc.tuat.ac.jp
Introduction

Shared control / Cooperative driving is a practical method for complicated traffic environment like urban areas.

Role of systems:
instruct the safe driving plan through display, sound, haptic and force feedback HMI devices.

Role of human drivers:
follow (override) the system instructions to keep safety.

Complementing the weak points of both the human and systems realizes safe driving.
Problems

If systems present the multiple operational orders to the driver through multiple HMI devices at the same time.

- **Warning:** person approaching!
- **HUD** shows slow down operation.
- **Steering wheel** gives *force feedback* for avoidance operation.
- **Sound** explains the situations.
- **Gas pedal** gives *haptic feedback* to release.

It is difficult for the driver to understand the multiple kind instructions in a short time.
An evaluation model gives the feasibility of switching driving behaviors by using the state transition model.

Input: state of driving operational behaviors

Output: Feasibility to switch

- Continuation probability of the current state = Cruising
- Transition probability of next state = Braking
State transition model of driving behaviors

Longitudinal state transition model

A: Acceleration
B: Braking
C: Cruising

Lateral state transition model

L: Left
R: Right
H: Holding

State transition probability is denoted by the conditional probability model.

P(C|A)
This model represents the co-occurrence probability of the state transition of a driving interface (foot pedal or steering wheel) while the driver is operating another interface.
Data collection

Subjects: 6 instructors of a driving school
Time: 9 am, 4 pm
Route: 4 km × 2 sessions
Area: Residential area near the train station

Data types:
- GNSS positioning
- Steering wheel angle
- Gas pedal operation
- Brake pedal operation
- Velocity
- Acceleration
- Yaw rate

https://www.openstreetmap.org/#map=17/35.70374/139.51991
Initial labeling of driving behaviors

The input motion data is divided every 0.1 second to classify.

The pedal control state is decided with the acceleration value a.
Threshold: $a_t = 0.1 \text{ m/s}^2$

$$S_p(a)=\begin{cases} \text{Acceleration} & (a > a_t) \\ \text{Cruising} & (-a_t \geq a \geq a_t) \\ \text{Braking} & (a < -a_t) \end{cases}$$

The steering wheel operation state is decided with the yaw rate ψ.
Threshold: $\dot{\psi}_t = 0.05 \text{ rad/s}$

$$S_s(\psi)=\begin{cases} \text{Left} & (\dot{\psi} < -\dot{\psi}_t) \\ \text{Holding} & (-\dot{\psi}_t \geq \dot{\psi} \geq \dot{\psi}_t) \\ \text{Right} & (\dot{\psi} > \dot{\psi}_t) \end{cases}$$

Initial label list: many discontinuous state transitions.
Integration of the driver states based on minimum cut algorithm

By applying the minimum cut algorithm, the driver states are classified in two states.

Initial state sequence

Cost for changing state

Physical distance as weight

Min-cut for B or others

Cost for changing state
Probabilistic models of the driver state transition

Approximation function:
Cumulative distribution function of Gamma distribution (CDFG)

\[\text{CDFG}(t, k, \theta) = \frac{\gamma(k, t/\theta)}{\Gamma(k)} \]

t: Continues time of the current state
\(\Gamma \): Gamma function
\(\gamma \): Incomplete Gamma function

Longitudinal state transition model

Source state: A, B, C
Destination state: C, A, B

P(C|C), P(A|C), P(B|C)

Actual state transition probability

CDFG

\[t, k, \theta \]

\[0, 2, 4, 6, 8, 10 \] Time (s)

\[0.00, 0.25, 0.50, 0.75, 1.00 \] Transition probability

\[k=1,\theta=1 \]
\[k=1,\theta=3 \]
\[k=1,\theta=5 \]
\[k=3,\theta=1 \]
\[k=3,\theta=3 \]
\[k=3,\theta=5 \]
Results and discussions

<table>
<thead>
<tr>
<th>Source state</th>
<th>Destination state</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>P(C</td>
</tr>
<tr>
<td>A</td>
<td>P(C</td>
</tr>
<tr>
<td>B</td>
<td>P(C</td>
</tr>
</tbody>
</table>

\[
P(A|t,C) = \text{CDFG}(t,k_{ca},\theta_{ca})/2
\]
\[
P(C|t,C) = 1 - P(A|t,C) - P(B|t,C)
\]
\[
P(B|t,C) = \text{CDFG}(t,k_{cb},\theta_{cb})/2
\]
\[
P(C|t,A) = \text{CDFG}(t,k_{ac},\theta_{ac})
\]
\[
P(A|t,A) = 1 - P(C|t,A)
\]
\[
P(C|t,B) = \text{CDFG}(t,k_{bc},\theta_{bc})
\]
\[
P(B|t,B) = 1 - P(C|t,B)
\]
Results and discussions

<table>
<thead>
<tr>
<th>Source state</th>
<th>Destination state</th>
<th>Transition probability</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H</td>
<td>P(H</td>
<td>t,H)</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>P(L</td>
<td>t,L)</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>P(R</td>
<td>t,R)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source state</th>
<th>Source state</th>
<th>Transition probability</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>L</td>
<td>P(H</td>
<td>t,L)</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>P(L</td>
<td>t,H)</td>
</tr>
<tr>
<td>R</td>
<td>H</td>
<td>P(R</td>
<td>t,H)</td>
</tr>
</tbody>
</table>

\[P(L|t,H) = \text{CDFG}(t, k_{hl}, \theta_{hl})/2 \]
\[P(H|t,H) = 1 - P(L|t,H) - P(R|t,H) \]
\[P(R|t,H) = \text{CDFG}(t, k_{hr}, \theta_{hr})/2 \]
\[P(H|t,L) = \text{CDFG}(t, k_{lh}, \theta_{lh}) \]
\[P(L|t,L) = 1 - P(H|t,L) \]
\[P(H|t,R) = \text{CDFG}(t, k_{rh}, \theta_{rh}) \]
\[P(R|t,R) = 1 - P(H|t,R) \]
Results and discussions

State transition model of the steering wheel operations when a foot pedal is operated.

Feasibility of switching the steering wheel operation is not related to the operation type of the pedals.
Results and discussions

State transition model of the foot pedal operations when a steering wheel is operated.

Feasibility of switching the foot pedal operation depends on the operation type of the steering wheel.
Results and discussions

Parameters of the state transition probabilities

<table>
<thead>
<tr>
<th>Longitudinal control state</th>
<th>Lateral control state</th>
</tr>
</thead>
<tbody>
<tr>
<td>transition</td>
<td>K</td>
</tr>
<tr>
<td>P(A</td>
<td>t,C)</td>
</tr>
<tr>
<td>P(B</td>
<td>t,C)</td>
</tr>
<tr>
<td>P(C</td>
<td>t,A)</td>
</tr>
<tr>
<td>P(C</td>
<td>t,B)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Longitudinal co-occurrence state</th>
<th>Lateral co-occurrence state</th>
</tr>
</thead>
<tbody>
<tr>
<td>P((\text{Lat}^C,C</td>
<td>t,\text{Lat},C))</td>
</tr>
<tr>
<td>P((\text{Lat}^C,A</td>
<td>t,\text{Lat},A))</td>
</tr>
<tr>
<td>P((\text{Lat}^C,B</td>
<td>t,\text{Lat},B))</td>
</tr>
</tbody>
</table>
Application

Behavior Planner for Autonomous Vehicles
which translates the motion plan can be easier to control by the driver.

Input: motion plan generated by a driving support system

Arbitration layer:
replaces the complex operations based on the proposed state transition model.

- Frequent
- Simultaneous operation switching

Is it possible to follow the original path?
Application

Target section of the state transition.

\[\text{Pr}_{i,0} = \{a_{i,0}, \dot{a}_{i,0}, \dot{\psi}_{i,0}, \ddot{\psi}_{i,0}\} \]

\[\text{Pr}_{i,1} = \{a_{i,1}, \dot{a}_{i,1}, \dot{\psi}_{i,1}, \ddot{\psi}_{i,1}\} \]

\[\text{Pr}_{i,2} = \{a_{i,2}, \dot{a}_{i,2}, \dot{\psi}_{i,2}, \psi_{i,2}\} \]

Waypoint: \(W_{pi} \)

Modification error.

The control parameters are optimized to minimize the sum of the difference from the input path plan.

Results:

Simplification level and path error

<table>
<thead>
<tr>
<th>Feasibility threshold (%)</th>
<th>Mean error (m)</th>
<th>Standard deviation (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.11</td>
<td>0.20</td>
</tr>
<tr>
<td>5</td>
<td>0.13</td>
<td>0.30</td>
</tr>
<tr>
<td>10</td>
<td>0.17</td>
<td>0.41</td>
</tr>
<tr>
<td>15</td>
<td>0.59</td>
<td>1.90</td>
</tr>
<tr>
<td>20</td>
<td>1.22</td>
<td>3.87</td>
</tr>
<tr>
<td>25</td>
<td>1.97</td>
<td>5.46</td>
</tr>
</tbody>
</table>

The graph shows the trajectories, input, and plan for different levels of simplification. The error and standard deviation are calculated for each level.
Conclusion

• The state transition models of the driving operations are proposed.
• The feasibility of the operation switching of drivers can be approximated by using Cumulative distribution function of Gamma distribution.
• The driving behavior planner for the arbitration layer between the motion planner and HMI devices is shown as the application.
• As a future work, the comparative experiments of the acceptability of HMI devices equipped with/without the arbitration layer will be performed.
A DRIVING OPERATIONAL BEHAVIOR ANALYSIS BASED ON THE STATE TRANSITION MODEL FOR AUTONOMOUS VEHICLES

http://www.coi.nagoya-u.ac.jp/en

This research is supported by the Center of Innovation (COI) Program from Japan Science and Technology Agency, JST.