Measuring Driver Perception

Combining Eye-tracking and Automated Road Scene Tracking

Provide relevant support

- ADAS supporting the driver
- Driving very demanding
- Selective in what to attend

Timely alert:
 → Observe driver perception, not inaction

Use of peripheral vision Look but failed to see

3

Latent variable

Xia et al. 2019

Verify

Have you seen:

○Yes ○No

ŤUDelft

Xia, Ye; Zhang, Danquing; Kim, Jinkyu; Nakayama, Ken; Zipser, Karl; Whitney, David; *Predicting Driver Attention in Critical Situations;* Asian Conference on Computer Vision (ACCV; 2019) https://doi.org/10.1007/978-3-030-20873-8 42

Verify

- Freeze probe
- Real-time probe

Limited to simulator

Limited in rate of probes Impractical in complex cases

Our goals: →Left turns on urban intersections →Verify awareness for all road users →On the road, un-choreographed

Attention in Urban left-turns

Instrumentation

Procedure

- Vehicle monitors road and driver's gaze
- Gaze metrics for each object
- Generates test images

- 13 drivers perform 91 left-turn manoeuvres
 Stop vehicle and start
 - Stop vehicle and start task ASAP (~60s)

- Display 8.1 real and 11.8 distractor images on average
 Driver indicates which he/she
 - recognises

TUDelft

On-road eye tracking data collection + processing

How do drivers observe the road?

13 participants 91 intersections 1824 Images Per intersection: 8.2 real images 11.8 fake images

	Selected	Not selected
Real images	29,1%	70,9%
Relevant objects	36,1%	63,9%
Irrelevant objects	19,4%	80,6%
Dummy images	6,7%	93,3%

Not selected ≠ overlooked Selected = perceived

TUDelft

How do drivers observe the road?

	Relevant objects (minimum gaze angle)						Recognized relevant objects (minimum gaze angle)					
	Ν	<2°	2-5°	5-10°	10-30°	>30°	Ν	<2°	2-5°	5-10°	10-30°	>30°
Car	241	79%	10%	6%	4%	1%	34%	33%	39%	40%	22%	33%
Bicycle	83	58%	13%	11%	16%	2%	47%	60%	45%	33%	15%	0%
Pedestrian	14	50%	14%	14%	21%	0%	64%	71%	100%	100%	0%	-
Bus	5	100%	0%	0%	0%	0%	60%	60%	-	-	-	-
Truck	6	50%	17%	0%	33%	0%	33%	33%	0%	-	50%	-
Motor	4	75%	0%	25%	0%	0%	50%	67%	-	0%	-	-
Total	353	73%	10%	8%	8%	1%	39%	40%	43%	41%	19%	20%

	Irrelevant objects (minimum gaze angle)						Recognized Irrelevant objects (minimum gaze angle)					
	Ν	<2°	2-5°	5-10°	10-30°	>30°	Ν	<2°	2-5°	5-10°	10-30°	>30°
Car	168	39%	23%	14%	18%	5%	15%	20%	13%	13%	13%	13%
Bicycle	101	19%	13%	18%	44%	7%	15%	11%	23%	11%	14%	29%
Pedestrian	63	16%	16%	13%	46%	10%	33%	50%	50%	13%	31%	17%
Bus	8	25%	25%	25%	25%	0%	63%	50%	100%	100%	0%	-
Truck	5	0%	20%	20%	40%	20%	20%	-	0%	0%	50%	0%
Motor	5	20%	20%	40%	20%	0%	40%	0%	100%	50%	0%	-
Total	353	28%	19%	16%	31%	6%	20%	21%	24%	18%	18%	18%

ŤUDelft

Can we predict awareness?

	R	elevance	Recognition			
	Exp(b)	t	р	Exp(b)	t	р
Intercept	0.39	-3.629	<0.001	0.262	-4.274	<0.001
Duration <2° [s]	5.452	3.024	0.003	1.424	1.591	0.112
Duration 2-5° [s]	2.658	3.273	0.001	0.956	-0.157	0.875
Duration 5-10° [s]	2.541	4.188	<0.001	1.995	3.153	0.002
Duration 10-30° [s]	1.094	0.741	0.459	0.946	-0.402	0.688
Duration >30° [s]	0.693	-1.574	0.116	0.929	-0.444	0.657
1st Saccade angle [°]	1.049	2.756	0.006	1.001	0.132	0.895
1st Saccade time [s]	0.901	-0.613	0.54	1.243	1.334	0.183
Preceding fixation [s]	1.087	0.345	0.73	1.361	1.217	0.224
		29	%			

Improvement over intercept model

- We could predict relevance
- But not recognition (in our setup)

How effective is our method?

Findings

- Recognition task confirms awareness, but memory capacity not overcome
 → Reduce 60s delay
- Peripheral road users are recognised
 → Fixation location insufficient for identifying misses
- The task was difficult, and maps were used less than images
 → Include better driving related features (e.g. location in scene)
- Could not judge awareness from track-aggregated predictors
 → Include more temporal aspects

Measuring Driver Perception

Combining Eye-tracking and Automated Road Scene Tracking

Thank you.

