

Contents

- Motivation
- Jargon
- Research questions & approach
- Data analysis
- Results
- Conclusion
- Since 24th October 2018

Motivation Publication research Insufficient use of driver Thoughts about these situations? There Ma olic Fir Den Haag Schiphol Rotterdam Haarlem Ad EI9 🛧 Ad EI9 🛧 Ad EI9 Amsterdam - Sloten As: Why? 7 ars То un act tance Trι 'that ma ance aad.nl perzoeks ningDHV -

Jargon

	Downloaded from SAE International by Shubham Bhusari, Monday, June 25, 2018	
SAE INTERNATIONAL	J3016™ JUN2018	Page 19 of 35

- Level of autonomy & ODD
- Situations can either be inside, outside, not in-or-out of the ODD.
- Our focus was on LKAS (control type)

Table 1 - Summary of levels of driving automation

			DDT			
Level	Name	Narrative definition	Sustained lateral and longitudinal vehicle motion control	OEDR	DDT fallback	ODD
Driver performs part or all of the DDT						
0	No Driving Automation	The performance by the <i>driver</i> of the entire <i>DDT</i> , even when enhanced by <i>active safety systems</i> .	Driver	Driver	Driver	n/a
1	Driver Assistance	The sustained and ODD-specific execution by a driving automation system of either the lateral or the longitudinal vehicle motion control subtask of the DDT (but not both simultaneously) with the expectation that the driver performs the remainder of the DDT.	Driver and System	Driver	Driver	Limited
2	Partial Driving Automation	The sustained and ODD-specific execution by a driving automation system of both the lateral and longitudinal vehicle motion control subtasks of the DDT with the expectation that the driver completes the OEDR subtask and supervises the driving automation system.	System	Driver	Driver	Limited
ADS ("System") performs the entire DDT (while engaged)						
3	Conditional Driving Automation	The sustained and ODD-specific performance by an ADS of the entire DDT with the expectation that the DDT fallback-ready user is receptive to ADS-issued requests to intervene, as well as to DDT performance- relevant system failures in other vehicle systems, and will respond appropriately.	System	System	Fallback- ready user (becomes the driver during fallback)	Limited
4	High Driving Automation	The sustained and ODD-specific performance by an ADS of the entire DDT and DDT fallback without any expectation that a user will respond to a request to intervene.	System	System	System	Limited
5	Full Driving Automation	The sustained and unconditional (i.e., not ODD- specific) performance by an ADS of the entire DDT and DDT fallback without any expectation that a user will respond to a request to intervene.	System	System	System	Unlimited

Research question & approach(1)

Develop an analysis method that combines **objective** and **subjective risk** measures for the assessment of the **ODD of vehicles equipped with LKAS**.

- How does the LKAS perform when it is within and when it is exceeding its pre-defined ODD?
- Is there a <u>mismatch in the ODD</u> between the one specified by the OEM's and that which is specified by the drivers? and which factors contribute to this mismatch?

Approach

- Field test: Case study of equipped Tesla Model S, **19 participants**
- LKAS performance (**MLP and SDLP**)
- Objective risk: Porbabalistic Driver Risk Field theory (PDRF)
- Subjective risk: Set of questionnaires (before and during test) → Trust, behaviour, situation awareness

Research question & approach(2)

Experimental setup: Equipped Tesla Model S

Research question & approach(3)

- Test route
- Test situations
- 1) In the city with no LM on the road boundary (Out of ODD)
- 2) Inside the tunnel (Inside ODD)
- 3) Close to an off-ramp (Neither in nor out)
- 4) In a curve on the highway (Inside)

Data analysis (1)

- PDRF (Objective risk)
 - Position in the lane → LKAS performance
 - LIDAR da
- Questionnair

0.68m 79

Objective measurements: Lateral driving risks

The Probabilistic driver risk field method

- Based on energy transferred and probability of collision
- Potential : Non-moving road entities
- Kinetic: moving objects \rightarrow not studied

 $\frac{-r_{s,b}}{D}$

Lane width

e

· max

 $0.5kM(V_{s,b})$

Energy

transfer

Sensitivity

factor

 R_{bs}

Source: (Anthony-Babu, F., 2018)

Results

Test Situation	Lane Keeping System Performance	Risk of Driving	ODD mismatch	Main Subjective Relationships
S1-No-LM (ODD-Out)	High bias towards left of lane centre;Considerable variation.	Highest	Second highest (68.7%);	ODD mismatch dependent on real time trust.
S2-Tunnel (ODD-In)	 Aligned close to lane centre; Bias away from left lane marking strip, avoiding left tunnel wall. 	Second highest	Second lowest (12.5%).	Real-time trust negatively correlated with perceived risk.
S3-Off-ramp (ODD-Not In Or Out)	Slight bias to left of lane centre;Highest variation.	Second lowest	Highest (81.2%);	ODD mismatch dependent on perceived risk and initial trust in AVs.
S4-Curve (ODD-In)	Closest to lane centre;Smallest variation.	Lowest	Lowest (6.25%).	Awareness about vehicle's ODD is dependent on perceived risk.

Conclusions

LKAS performance: Differences identified; deviation from centre & variation in deviation

Aid OEMs in deciding if a situation should remain inside or moved outside the lane keeping system's ODD while <u>keeping the drivers' safety and awareness</u> of the system capabilities at the core of the decision-making process.

is most important.

- Proposed method → compare test situations, not making decisions of ODD
 - Thresholds for assessment component vary btn OEMs

Since 24th October 2018.....

- Projects at RHDHV
 - I-AT project \rightarrow Cyclist interaction with AV (static and kinetic PDRF)
 - Performance in curves and provincial roads \rightarrow Prov. Noord Holland
 - MSc thesis project: using this approach for <u>performance of LKAS on curves</u>
- Product/services within RHDHV
 - Infrastructure readiness for AV's \rightarrow Kansen kaart
 - CyleRAP extension with risk measurements \rightarrow safety on the road and fietspad.
- TRB Annual meeting: poster presentation 2020

Vision: Harmonization among OEMs \rightarrow detailed ODD description for each SAE level.

Thank you for your attention!

